Quantum Mechanics 3 notes by K. Sreeman Reddy.

1. The Klein-Gordon equation
2. Electromagnetic interaction
3. Conserved current
4. Non-relativistic limit
5. The Dirac equation
6. Classical Field Theory
7. Introduction
8. A vibrating system
9. Increase the degrees of freedom to N from 2
10. Quantizingit
11. Classical string
12. Quantizing it
13. Lagrange formulation
14. Hamilton formulation
15. Noether's theorem
16. Conservation laws
17. The free scalar quantum field
18. Canonical or 2nd Quantization
19. Heisenberg_picture
20. Fourier decomposition of the field
21. Creation and annihilation operators
22. Wavefunctions
23. Normalisation
24. Causality
25. Interacting Scalar Fields

We will use the metric signature $\eta_{\mu \nu}=\operatorname{diag}(+1,-1,-1,-1)$

The Klein-Gordon equation

$\left(\square+\left(\frac{m c}{\hbar}\right)^{2}\right) \psi(x)=0, \quad$ where $\square=\partial^{\mu} \partial_{\mu}$

	Position space $x=(c t, \mathbf{x})$	Fourier transformation $\omega=E / \hbar, \mathbf{k}=\mathbf{p} / \hbar$	Momentum space $p=(E / c, \mathbf{p})$
Separated time and space	$\left(\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}-\nabla^{2}+\frac{m^{2} c^{2}}{\hbar^{2}}\right) \psi(t, \mathbf{x})=0$	$\psi(t, \mathbf{x})=\int \frac{\mathrm{d} \omega}{2 \pi \hbar} \int \frac{\mathrm{~d}^{3} k}{(2 \pi \hbar)^{3}} e^{-i(\omega t-\mathbf{k} \cdot \mathbf{x})} \psi(\omega, \mathbf{k})$	$E^{2}=\mathbf{p}^{2} c^{2}+m^{2} c^{4}$
Four- vector form	$\left(\square+\left(\frac{m c}{\hbar}\right)^{2}\right) \psi(x)=0$,	$\psi(x)=\int \frac{\mathrm{d}^{4} p}{(2 \pi)^{4}} e^{-i p \cdot x} \psi(p)$	$p^{2}=+m^{2}$

Electromagnetic interaction

Let $D_{\mu}=\partial_{\mu}+\frac{i q}{c} A_{\mu}$ then under minimal coupling with A_{μ}

$$
\begin{aligned}
D_{\mu} D^{\mu} \phi=-\left(\partial_{c t}+\frac{i q}{\hbar} A_{0}\right)^{2} \phi+\left(\partial_{i}+\frac{i q}{\hbar} A_{i}\right)^{2} \phi & =-\left(\frac{m c}{\hbar}\right)^{2} \phi \\
\left(p_{\mu}-\frac{q}{c} A_{\mu}\right)\left(p^{\mu}-\frac{q}{c} A^{\mu}\right) & =m^{2} c^{2} \phi
\end{aligned}
$$

$$
\partial_{\mu} J^{\mu}(x)=0, \quad J^{\mu}(x) \equiv \frac{i \hbar}{2 m}\left(\phi^{*}(x) \partial^{\mu} \phi(x)-\phi(x) \partial^{\mu} \phi^{*}(x)\right)-\frac{q}{m c} A^{\mu} \phi^{*} \phi
$$

Non-relativistic limit

$\psi(x, t)=\phi(x, t) e^{-\frac{i}{\hbar} m c^{2} t} \quad$ where $\quad \phi(x, t)=u_{E}(x) e^{-\frac{i}{\hbar} E^{\prime} t}$.
Since $\left|i \hbar \frac{\partial \phi}{\partial t}\right|=E^{\prime} \phi \ll m c^{2} \phi$ and $\left|q A_{0} \phi\right| \ll m c^{2} \phi$ in the non-relativistic limit

$$
i \hbar \frac{\partial \phi}{\partial t}=\left[\frac{1}{2 m}\left(\vec{p}-\frac{q}{c} \vec{A}\right)^{2}+m c^{2}+q A^{0}\right] \phi
$$

we get back the classical Pauli field.

The Dirac equation

$i \hbar \gamma^{\mu} \partial_{\mu} \psi-m c \psi=0$
In Dirac representation

$$
\gamma^{0}=\left(\begin{array}{cc}
I_{2} & 0 \\
0 & -I_{2}
\end{array}\right), \quad \gamma^{k}=\left(\begin{array}{cc}
0 & \sigma^{k} \\
-\sigma^{k} & 0
\end{array}\right), \quad \gamma^{5}=\left(\begin{array}{cc}
0 & I_{2} \\
I_{2} & 0
\end{array}\right)
$$

In Weyl (chiral) representation

$$
\gamma^{0}=\left(\begin{array}{cc}
0 & I_{2} \\
I_{2} & 0
\end{array}\right), \quad \gamma^{k}=\left(\begin{array}{cc}
0 & \sigma^{k} \\
-\sigma^{k} & 0
\end{array}\right), \quad \gamma^{5}=\left(\begin{array}{cc}
-I_{2} & 0 \\
0 & I_{2}
\end{array}\right)
$$

In Weyl (chiral) representation (alternate form)

$$
\gamma^{0}=\left(\begin{array}{cc}
0 & -I_{2} \\
-I_{2} & 0
\end{array}\right), \quad \gamma^{k}=\left(\begin{array}{cc}
0 & \sigma^{k} \\
-\sigma^{k} & 0
\end{array}\right), \quad \gamma^{5}=\left(\begin{array}{cc}
I_{2} & 0 \\
0 & -I_{2}
\end{array}\right)
$$

In Majorana representation

$$
\begin{array}{lll}
\gamma^{0}=\left(\begin{array}{cc}
0 & \sigma^{2} \\
\sigma^{2} & 0
\end{array}\right), & \gamma^{1}=\left(\begin{array}{cc}
i \sigma^{3} & 0 \\
0 & i \sigma^{3}
\end{array}\right), & \gamma^{2}=\left(\begin{array}{cc}
0 & -\sigma^{2} \\
\sigma^{2} & 0
\end{array}\right), \\
\gamma^{3}=\left(\begin{array}{cc}
-i \sigma^{1} & 0 \\
0 & -i \sigma^{1}
\end{array}\right), & \gamma^{5}=\left(\begin{array}{cc}
\sigma^{2} & 0 \\
0 & -\sigma^{2}
\end{array}\right), & C=\left(\begin{array}{cc}
0 & -i \sigma^{2} \\
-i \sigma^{2} & 0
\end{array}\right),
\end{array}
$$

Classical Field Theory

In a classical string, there are uncountable number of particles but only countable modes if we fix some boundary conditions. But if no boundary conditions we will have uncountable modes.

Introduction

A vibrating system

The below 2 equations are linear because we neglected the higher order terms. But quantum mechanics is believed to be a linear theory without any approximation.

$$
\begin{aligned}
& m \ddot{q}_{1}=-\partial V / \partial q_{1} \\
& m \ddot{q}_{2}=-\partial V / \partial q_{2} \\
& V=k\left(q_{1}^{2}+q_{2}^{2}-q_{1} q_{2}\right)
\end{aligned}
$$

Now observe that if we define

$$
Q_{1}=\left(q_{1}+q_{2}\right) / \sqrt{2} \quad Q_{2}=\left(q_{1}-q_{2}\right) / \sqrt{2}
$$

then for $\omega_{1}=\sqrt{\frac{k}{m}}$ and $\omega_{2}=\sqrt{\frac{3 k}{m}}$

$$
\begin{aligned}
m \ddot{Q}_{1} & =-\partial V / \partial Q_{1} \\
m \ddot{Q}_{2} & =-\partial V / \partial Q_{2} \\
V \equiv V\left(Q_{1}, Q_{2}\right) & =\frac{1}{2} m \omega_{1}^{2} Q_{1}^{2}+\frac{1}{2} m \omega_{2}^{2} Q_{2}^{2}
\end{aligned}
$$

A remarkable thing has happened: the two combinations $q_{1}+q_{2}$ and $q_{1}-q_{2}$ of the original coordinates satisfy uncoupled equations. These are called normal modes or modes.

- In general the system is in 'a superposition of modes'.
- Modes do not interact.
- The simple change of variables $\left(q_{1}, q_{2}\right) \rightarrow\left(Q_{1}, Q_{2}\right)$ does remove the $q_{1} q_{2}$ coupling, this would not be the case if, say, cubic terms in V were to be considered.

Increase the degrees of freedom to \mathbf{N} from 2

In general we can find the mode coordinates or normal coordinates

$$
Q_{r}=\sum_{s=1}^{N} a_{r s} q_{s}
$$

such that

$$
\begin{aligned}
E & =\sum_{r=1}^{N} \frac{1}{2} m \dot{q}_{r}^{2}+V\left(q_{1}, \ldots, q_{r}\right) \\
E & =\sum_{r=1}^{N}\left[\frac{1}{2} m \dot{Q}_{r}^{2}+\frac{1}{2} m \omega_{r}^{2} Q_{r}^{2}\right]
\end{aligned}
$$

Quantizing it

$$
E=\sum_{r=1}^{N}\left(n_{r}+\frac{1}{2}\right) \hbar \omega_{r}
$$

We forget about the original N degrees of freedom $q_{1}, q_{2}, \ldots, q_{N}$ and the original N 'atoms', which indeed are only remembered in the above equation via the fact that there are N different mode frequencies ωr. Instead we concentrate on the quanta and treat them as 'things' which really determine the behaviour of our quantum system.

For the state characterized by $\left(n_{1}, n_{2}, \ldots, n_{N}\right)$ there
are n_{1} quanta of mode 1 (frequency ω_{1}), n_{2} of mode $2, \ldots$ and n_{N} of mode N.

Classical string

Let $N \rightarrow \infty$ and $N a=l$

$$
\frac{1}{c^{2}} \frac{\partial^{2} \phi(x, t)}{\partial t^{2}}=\frac{\partial^{2} \phi(x, t)}{\partial x^{2}}
$$

$$
\begin{gathered}
\phi(x, t)=\sum_{r=1}^{\infty} A_{r}(t) \sin \left(\frac{r \pi x}{\ell}\right) \\
E=\int_{0}^{\ell}\left[\frac{1}{2} \rho\left(\frac{\partial \phi}{\partial t}\right)^{2}+\frac{1}{2} \rho c^{2}\left(\frac{\partial \phi}{\partial x}\right)^{2}\right] \mathrm{d} x \\
E=(\ell / 2) \sum_{r=1}^{\infty}\left[\frac{1}{2} \rho \dot{A}_{r}^{2}+\frac{1}{2} \rho \omega_{r}^{2} A_{r}^{2}\right]
\end{gathered}
$$

Quantizing it

$$
E=\sum_{r=1}^{\infty}\left(n_{r}+\frac{1}{2}\right) \hbar \omega_{r}
$$

We remark that as $l \rightarrow \infty$, the mode sum will be replaced by an integral over a continuous frequency variable.

Lagrange formulation

$$
\begin{gathered}
\frac{\partial \mathcal{L}}{\partial \phi^{a}}-\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi^{a}\right)}\right)=0 \\
S=\int \mathrm{d} t \int \mathrm{~d}^{3} x \mathcal{L}=\int \mathrm{d}^{4} x \mathcal{L} \\
\mathcal{L}^{\prime}=\mathcal{L}+\partial_{\mu} K^{\mu}(\Phi)
\end{gathered}
$$

The above Lagrangian also is equivalent to \mathcal{L}.

Hamilton formulation

For many fields $\phi_{i}(\mathbf{x}, t)$ and their conjugates $\pi_{i}(\mathbf{x}, t)$ the Hamiltonian density is a function of them all:

$$
\mathcal{H}\left(\phi_{1}, \phi_{2}, \ldots, \pi_{1}, \pi_{2}, \ldots, \mathbf{x}, t\right)=\sum_{i} \dot{\phi}_{i} \pi_{i}-\mathcal{L}\left(\phi_{1}, \phi_{2}, \ldots \nabla \phi_{1}, \nabla \phi_{2}, \ldots, \partial \phi_{1} / \partial t, \partial \phi_{2} / \partial t, \ldots, \mathbf{x}, t\right)
$$

where each conjugate field is defined with respect to its field,

$$
\begin{aligned}
& \pi_{i}(\mathbf{x}, t)=\frac{\partial \mathcal{L}}{\partial \dot{\phi}_{i}} \\
& H=\int \mathcal{H} d^{3} x
\end{aligned}
$$

Hamiltonian field equations:

$$
\begin{gathered}
\dot{\phi}_{i}=+\frac{\delta \mathcal{H}}{\delta \pi_{i}}, \quad \dot{\pi}_{i}=-\frac{\delta \mathcal{H}}{\delta \phi_{i}} \\
\frac{\delta}{\delta \phi_{i}}=\frac{\partial}{\partial \phi_{i}}-\partial_{\mu} \frac{\partial}{\partial\left(\partial_{\mu} \phi_{i}\right)}
\end{gathered}
$$

Noether's theorem

If $\Delta \mathcal{L}, \Delta \phi$ and Δx are defined by $\mathcal{L}(x) \rightarrow \mathcal{L}(x)+\epsilon \Delta \mathcal{L}$ (we know that $\Delta \mathcal{L}=\partial_{\mu} K^{\mu}$ for some K^{μ}), $\phi \rightarrow \phi+\epsilon \Delta \phi$ and $x \rightarrow x+\epsilon \Delta x$ then the conserved current current defined by

$$
j^{\mu}=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \Delta \phi-K^{\mu}
$$

satisfies $\partial_{\mu} j^{\mu}=0$. (j^{μ} is unique up to a multiplicative constant)
If the symmetry involves more than one field, the conserved current is

$$
j^{\mu}=\sum_{i} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi_{i}\right)} \Delta \phi_{i}-K^{\mu}
$$

The above conservation law implies that the Noether charge over all space is conserved

$$
Q=\int d^{3} \mathbf{x} j^{0}
$$

is constant in time: $\frac{d Q}{d t}=0$.
OR:

$$
T^{\mu \nu}=\frac{\partial \mathscr{L}}{\partial\left(\partial_{\mu} \Phi^{A}\right)} \partial^{\nu} \Phi^{A}-\eta^{\mu \nu} \mathscr{L}
$$

which is called the stress-energy tensor. We can now define a current

$$
J^{\mu}=\frac{\partial \mathscr{L}}{\partial\left(\partial_{\mu} \Phi^{A}\right)} \delta \Phi^{A}-T^{\mu \nu} \delta x_{\nu}
$$

and write

$$
\delta \mathscr{A}=\int_{\Omega} d^{4} x \partial_{\mu} J^{\mu}
$$

This relation holds for arbitrary variations of the fields and coordinates provided the equations of motion are satisfied.

Conservation laws

The 1st 4 symmetries together form the Poincaré group

Conservation Law	Respective Noether symmetry invariance	Number of dimensions
Conservation of mass-energy	Time-translation invariance	1: translation along time axis
Conservation of linear momentum	Space-translation invariance	3: translation along x,y,z directions
Conservation of angular momentum	Rotation invariance	3: rotation about x, y, z axes
Conservation of CM (center-of- momentum) velocity	Lorentz-boost invariance	3: Lorentz-boost along x,y,z directions
Conservation of electric charge	$U(1)$ Gauge invariance	$1 \otimes 4:$ scalar field (1D) in 4D spacetime (x,y,z + time evolution)
Conservation of color charge	$S U(3)$ Gauge invariance	$3:$ r,g,b
Conservation of weak isospin	$S U(2)$ Gauge invariance	$1:$ weak charge
Conservation of probability	Probability invariance	$1 \otimes 4:$ total probability always $=1$ in whole x, y, z space, during time evolution

The free scalar quantum field

$$
\mathcal{L}_{\mathrm{KG}}=\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} m^{2} \phi^{2}
$$

Canonical or 2nd Quantization

$$
[\hat{\phi}(\vec{x}, t), \hat{\pi}(\vec{y}, t)]=\mathrm{i} \delta^{3}(\vec{x}-\vec{y})
$$

Heisenberg picture

$$
\begin{aligned}
& \dot{\hat{\phi}}(x)=\mathrm{i}[\hat{H}, \hat{\phi}(x)] \\
& \dot{\hat{\pi}}(x)=\mathrm{i}[\hat{H}, \hat{\pi}(x)]
\end{aligned}
$$

Fourier decomposition of the field

The four-dimensional analogue of the Fourier expansion of the field ϕ takes the form

$$
\hat{\phi}(x)=\int_{-\infty}^{\infty} \frac{\mathrm{d}^{3} k}{(2 \pi)^{3} \sqrt{2 \omega}}\left[\hat{a}(k) \mathrm{e}^{-\mathrm{i} k \cdot x}+\hat{a}^{\dagger}(k) \mathrm{e}^{\mathrm{i} k \cdot x}\right]
$$

with a similar expansion for the conjugate momentum $\hat{\pi}=\dot{\hat{\phi}}$:

$$
\hat{\pi}(x)=\int_{-\infty}^{\infty} \frac{\mathrm{d}^{3} k}{(2 \pi)^{3} \sqrt{2 \omega}}(-\mathrm{i} \omega)\left[\hat{a}(k) \mathrm{e}^{-\mathrm{i} k \cdot x}-\hat{a}^{\dagger}(k) \mathrm{e}^{\mathrm{i} k \cdot x}\right]
$$

Here $k \cdot x$ is the four-dimensional dot product $k \cdot x=\omega t-\boldsymbol{k} \cdot \boldsymbol{x}$, and $\omega=+\left(\boldsymbol{k}^{2}+m^{2}\right)^{1 / 2}$. A positive-frequency solution of the field equation has as its coefficient the operator that destroys a particle in that single-particle wavefunction. A negative-frequency solution of the field equation, being the Hermitian conjugate of a positive-frequency solution, has as its coefficient the operator that creates a particle in that positive-energy single-particle wavefunction.

$$
\hat{n}(k)=\hat{a}^{\dagger}(k) \hat{a}(k)
$$

The Hamiltonian is found to be

$$
\hat{H}_{\mathrm{KG}}=\int \mathrm{d}^{3} x \hat{\mathcal{H}}_{\mathrm{KG}}=\int_{-\infty}^{\infty} \mathrm{d}^{3} x \frac{1}{2}\left[\hat{\pi}^{2}+\nabla \hat{\phi} \cdot \nabla \hat{\phi}+m^{2} \hat{\phi}^{2}\right]
$$

and this can be expressed in terms of the \hat{a} 's and the \hat{a}^{\dagger} 's using the expansion for $\hat{\phi}$ and $\hat{\pi}$ and the commutator

$$
\left[\hat{a}(k), \hat{a}^{\dagger}\left(k^{\prime}\right)\right]=(2 \pi)^{3} \delta^{3}\left(\boldsymbol{k}-\boldsymbol{k}^{\prime}\right)
$$

with all others vanishing. The result is, as expected,

$$
\hat{H}_{\mathrm{KG}}=\frac{1}{2} \int \frac{\mathrm{~d}^{3} \boldsymbol{k}}{(2 \pi)^{3}}\left[\hat{a}^{\dagger}(k) \hat{a}(k)+\hat{a}(k) \hat{a}^{\dagger}(k)\right] \omega
$$

and, normally ordering (operators rearranged with all creation operators on the left) as usual, we arrive at

$$
\begin{gathered}
\hat{H}_{\mathrm{KG}}=\int \frac{\mathrm{d}^{3} \boldsymbol{k}}{(2 \pi)^{3}} \hat{a}^{\dagger}(k) \hat{a}(k) \omega \\
\vec{P}=-\int d^{3} x \pi \vec{\nabla} \phi=\int \frac{d^{3} p}{(2 \pi)^{3}} \vec{p} a_{\vec{p}}^{\dagger} a_{\vec{p}}
\end{gathered}
$$

Creation and annihilation operators

$$
\begin{gathered}
a_{\mathbf{p}}=\frac{i}{\sqrt{2 \omega_{\mathbf{p}}}} \int d^{3} \mathbf{x}\left[\Pi(\mathbf{x})-i \omega_{\mathbf{p}} \phi(\mathbf{x})\right] e^{-i \mathbf{p} \cdot \mathbf{x}} \\
a_{\mathbf{k}}^{\dagger}=\frac{-i}{\sqrt{2 \omega_{\mathbf{k}}}} \int d^{3} \mathbf{y}\left[\Pi(\mathbf{y})+i \omega_{\mathbf{k}} \phi(\mathbf{y})\right] e^{i \mathbf{k} \cdot \mathbf{y}} \\
{\left[\hat{H}, a_{\mathbf{p}}^{\dagger}\right]=\omega_{\mathbf{p}} a_{\mathbf{p}}^{\dagger}} \\
{\left[\hat{H}, a_{\mathbf{p}}\right]=-\omega_{\mathbf{p}} a_{\mathbf{p}}} \\
\overbrace{[H,[H,[\cdots[H}^{n \text { times }}, a_{\mathbf{p}}] \cdots]]]=\left(-\omega_{\mathbf{p}}\right)^{n} a \\
\overbrace{\left[\hat{H},\left[\hat{H},\left[\cdots\left[\hat{H}, a_{\mathbf{p}}^{\dagger}\right] \cdots\right]\right]\right]=\left(\omega_{\mathbf{p}}\right)^{n} a}^{n \text { times }} \\
\hat{H} a_{\mathbf{p}}=a_{\mathbf{p}}\left(\hat{H}-E_{\mathbf{p}}\right) \\
\hat{H}^{n} a_{\mathbf{p}}=a_{\mathbf{p}}\left(\hat{H}-E_{\mathbf{p}}\right)^{n} \\
e^{i \hat{H} t} a_{\mathbf{p}} e^{-i \hat{H} t}=a_{\mathbf{p}} e^{-i E_{\mathbf{p}} t}, \\
e^{i \hat{H} t} a_{\mathbf{p}}^{\dagger} e^{-i \hat{H} t}=a_{\mathbf{p}}^{\dagger} e^{i E_{\mathbf{p}} t} \\
e^{-i \hat{\mathbf{P}} \cdot \mathbf{x}} a_{\mathbf{p}} e^{i \hat{\mathbf{P}} \cdot \mathbf{x}}=a_{\mathbf{p}} e^{i \mathbf{p} \cdot \mathbf{x}} \\
e^{-i \hat{\mathbf{P}} \cdot \mathbf{x}} a_{\mathbf{p}}^{\dagger} e^{i \hat{\mathbf{P}} \cdot \mathbf{x}}=a_{\mathbf{p}}^{\dagger} e^{-i \mathbf{p} \cdot \mathbf{x}} \\
\phi(x)=e^{i(\hat{H} t-\hat{\mathbf{P}} \cdot \mathbf{x})} \phi(0) e^{-i(\hat{H} t-\hat{\mathbf{P}} \cdot \mathbf{x})} \\
=e^{i P \cdot x} \phi(0) e^{-i P \cdot x}
\end{gathered}
$$

Wavefunctions

$\left.\begin{array}{l}\langle 0| \hat{\phi}(x, t)\left|k^{\prime}\right\rangle=\langle 0| \int \frac{\mathrm{d} k}{2 \pi \sqrt{2 \omega}}\left[\hat{a}(k) \mathrm{e}^{\mathrm{i} k x-\mathrm{i} \omega t}+\hat{a}^{\dagger}(k) \mathrm{e}^{\mathrm{i} k x+\mathrm{i} \omega t}\right] N \hat{a}^{\dagger}\left(k^{\prime}\right)|0\rangle \\ \langle 0| \int \frac{N d}{2 \pi \sqrt{2 \omega}}\left[\hat{a}^{\dagger}\left(k^{\prime}\right) \hat{a}(k)+2 \pi \delta\left(k-k^{\prime}\right)\right] \mathrm{e}^{\mathrm{i} k x-\mathrm{i} \omega t}|0\rangle=N \frac{\mathrm{e}^{\mathrm{e}^{\prime} k^{\prime} x \omega^{\prime} t}}{\sqrt{2 \omega^{\prime}}}\end{array}\right\} \begin{aligned} & 0|\hat{\phi}(x, t)| 0\rangle=0\end{aligned}$
Thus we discover that the vacuum to one-particle matrix elements of the field operators are just the familiar wavefunctions of single-particle quantum mechanics.

$$
\langle\mathbf{q}| \phi(\mathbf{x})|0\rangle=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}} \frac{1}{2 E_{\mathbf{p}}} e^{-i \mathbf{p} \cdot \mathbf{x}}\langle\mathbf{q} \mid \mathbf{p}\rangle=e^{-i \vec{q} \cdot \vec{x}}
$$

In the language of second quantization, eiq $\times x$ tells us how much amplitude there is in
the qth momentum mode if we create a scalar particle at spacetime point x.

Normalisation

- $\mathrm{d}^{4} p \delta\left(p^{2}-m^{2}\right) \theta\left(p^{0}\right)$ is Lorentz invariant.
- Using $\delta[f(x)]=\sum_{\{x \mid f(x)=0\}} \frac{1}{\left|f^{\prime}(x)\right|} \delta(x)$ we get

$$
\begin{gathered}
\delta\left(p^{2}-m^{2}\right) \theta\left(p_{0}\right)=\frac{1}{2 E_{p}} \delta\left(p_{0}-E_{p}\right) \theta\left(p_{0}\right) \\
|\mathbf{p}\rangle=\sqrt{2 E_{\mathbf{p}}} a_{\mathbf{p}}^{\dagger}|0\rangle \\
\langle\mathbf{p} \mid \mathbf{k}\rangle=2 E_{\mathbf{p}}(2 \pi)^{3} \delta^{(3)}(\mathbf{p}-\mathbf{k}) \\
\mathbf{1}_{1-\text { particle }}=\int \frac{d^{3} \mathbf{p}}{(2 \pi)^{3}}|\mathbf{p}\rangle \frac{1}{2 E_{\mathbf{p}}}\langle\mathbf{p}|
\end{gathered}
$$

Causality

If $\phi(x), \phi(y)$ vanishes, one measurement cannot affect the other. In fact, if the commutator vanishes for $(x-y)^{2}<0$, causality is preserved quite generally, since
commutators involving any function of $\phi(x)$, including $\pi(x)=\frac{\partial \phi}{\partial t}$, would also have to vanish.

$$
\begin{aligned}
{[\phi(x), \phi(y)] } & =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{p}}}} \int \frac{d^{3} q}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{\mathbf{q}}}} \\
& \times\left[\left(a_{\mathbf{p}} e^{-i p \cdot x}+a_{\mathbf{p}}^{\dagger} e^{i p \cdot x}\right),\left(a_{\mathbf{q}} e^{-i q \cdot y}+a_{\mathbf{q}}^{\dagger} e^{i q \cdot y}\right)\right] \\
& =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{2 E_{\mathbf{p}}}\left(e^{-i p \cdot(x-y)}-e^{i p \cdot(x-y)}\right) \\
& =D(x-y)-D(y-x)
\end{aligned}
$$

- $[\phi(x), \phi(y)]$ is Lorentz invariant and it is a complex number.
- When $(x-y)^{2}<0$ we can always change our frame such that $(x-y) \rightarrow-(x-y)$ and the commutator will be 0 . This we can't do if $(x-y)^{2}>0$.

In quantum field theory, causality requires that every particle have a corresponding antiparticle with the same mass and opposite quantum numbers (in this case electric charge). For the real-valued Klein-Gordon field, the particle is its own antiparticle.

Interacting Scalar Fields

