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We will use the metric signature 
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Non-relativistic limit

 
Since  and  in the non-relativistic limit

we get back the classical Pauli field.

The Dirac equation

 In Dirac representation

In Weyl (chiral) representation

In Weyl (chiral) representation (alternate form)

In Majorana representation

Classical Field Theory

In a classical string, there are uncountable number of particles but only countable modes if we fix some boundary conditions. But if no
boundary conditions we will have uncountable modes.

Introduction

A vibrating system

The below 2 equations are linear because we neglected the higher order terms. But quantum mechanics is believed to be a linear theory
without any approximation.
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Now observe that if we define

then for  and 

A remarkable thing has happened: the two combinations  and  of the original coordinates satisfy uncoupled equations. These are
called normal modes or modes.

In general the system is in ‘a superposition of modes’.

Modes do not interact.

The simple change of variables  does remove the  coupling, this would not be the case if, say, cubic terms in 
were to be considered.

Increase the degrees of freedom to N from 2

In general we can find the mode coordinates or normal coordinates

such that

Quantizing it

We forget about the original N degrees of freedom  and the original  ‘atoms’, which indeed are only remembered in the above
equation via the fact that there are  different mode frequencies . Instead we concentrate on the quanta and treat them as ‘things’ which
really determine the behaviour of our quantum system.
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Classical string

Let  and 
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Quantizing it

We remark that as , the mode sum will be replaced by an integral over a continuous frequency variable.

Lagrange formulation

The above Lagrangian also is equivalent to .

Hamilton formulation

For many fields  and their conjugates  the Hamiltonian density is a function of them all:

where each conjugate field is defined with respect to its field,

Hamiltonian field equations:

Noether's theorem
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satisfies . (  is unique up to a multiplicative constant)
 If the symmetry involves more than one field, the conserved current is

The above conservation law implies that the Noether charge over all space is conserved

ϕ(x, t) =  A  (t) sin  

r=1

∑
∞

r (
ℓ

rπx)

E =   ρ  +  ρc  dx∫
0

ℓ

[
2
1

(
∂t
∂ϕ

)
2

2
1 2 (

∂x
∂ϕ

)
2

]

E = (ℓ/2)   ρ  +  ρω  A  

r=1

∑
∞

[
2
1
Ȧr
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is constant in time: .
 OR:

which is called the stress-energy tensor. We can now define a current

and write

This relation holds for arbitrary variations of the fields and coordinates provided the equations of motion are satisfied.

Conservation laws

The 1st 4 symmetries together form the Poincaré group

Conservation Law Respective Noether symmetry
invariance Number of dimensions

Conservation of mass-energy Time-translation invariance 1: translation along time axis

Conservation of linear momentum Space-translation invariance 3: translation along x,y,z directions

Conservation of angular momentum Rotation invariance 3: rotation about x,y,z axes

Conservation of CM (center-of-
momentum) velocity Lorentz-boost invariance 3: Lorentz-boost along x,y,z directions

Conservation of electric charge  Gauge invariance : scalar field (1D) in 4D spacetime (x,y,z + time
evolution)

Conservation of color charge  Gauge invariance : r,g,b

Conservation of weak isospin SU(2)L Gauge invariance : weak charge

Conservation of probability Probability invariance : total probability always = 1 in whole x,y,z space,
during time evolution

The free scalar quantum field

Canonical or 2nd Quantization

Heisenberg picture

Fourier decomposition of the field

The four-dimensional analogue of the Fourier expansion of the field  takes the form

with a similar expansion for the conjugate momentum  :
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Here  is the four-dimensional dot product , and  . A positive-frequency solution of the field
equation has as its coefficient the operator that destroys a particle in that single-particle wavefunction. A negative-frequency solution of the
field equation, being the Hermitian conjugate of a positive-frequency solution, has as its coefficient the operator that creates a particle in that
positive-energy single-particle wavefunction.

The Hamiltonian is found to be

and this can be expressed in terms of the  's and the  's using the expansion for  and  and the commutator

with all others vanishing. The result is, as expected,

and, normally ordering (operators rearranged with all creation operators on the left) as usual, we arrive at

Creation and annihilation operators
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Thus we discover that the vacuum to one-particle matrix elements of the field operators are just the familiar wavefunctions of single-particle
quantum mechanics.

In the language of second quantization, eiq·x tells us how much amplitude there is in
 the qth momentum mode if we create a scalar particle at spacetime point x.

Normalisation

 is Lorentz invariant.

Using  we get

Causality

If  vanishes, one measurement cannot affect the other. In fact, if the commutator vanishes for , causality is preserved
quite generally, since

 
commutators involving any function of , including , would also have to vanish.

 is Lorentz invariant and it is a complex number.

When  we can always change our frame such that  and the commutator will be . This we can't do if 
.

In quantum field theory, causality requires that every particle have a corresponding antiparticle with the same mass and opposite quantum
numbers (in this case electric charge). For the real-valued Klein-Gordon field, the particle is its own antiparticle.

Interacting Scalar Fields
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