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Angular Momentum

 The following formulas are valid even if we replace  with  or .
 

 

 

 
 

Generator of rotations

where  and 

When the total angular momentum quantum number is a half-integer (1/2, 3/2, etc.), , and when it is an
integer, . Mathematically, the structure of rotations in the universe is not SO(3), the group of three-
dimensional rotations in classical mechanics. Instead, it is SU(2), which is identical to SO(3) for small rotations, but where a
360° rotation is mathematically distinguished from a rotation of 0°. A rotation of 720° is, however, the same as a rotation of 0°.

On the other hand,  in all circumstances, because a 360° rotation of a spatial configuration is the
same as no rotation at all. (This is different from a 360° rotation of the internal (spin) state of the particle, which might or might
not be the same as no rotation at all.)

When rotation operators act on quantum states, it forms a representation of the Lie group  (for  and ), or 
 (for ).

Conservation of angular momentum

In a spherically-symmetric situation, the Hamiltonian is invariant under rotations and angular momentum is conserved.

Ladder operators
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,

where  is the Levi-Civita symbol and each of i, j and k can take any of the values ,  and .

From this, the commutation relations among the ladder operators and Jz are obtained,

Since 
 

 

The Variational Method

If  is a function of  then  reduces to a function, . We then find the values  which
minimize . This minimum  provides an upper bound on .

Higher energy states

For example to get the energy of the 1st excited state we can find all states which are perpendicular to  and
then minimize the energy. That will given an upper bound to the 1st excited state.

If  is rotationally invariant, the energy eigenstates have definite angular momentum. The ground state will have . By
varying spherically symmetric trial functions we can estimate the ground-state energy. If we next choose  trial functions 

 wil obey

where  is the lowest energy level with . We can clearly keep going up in .

The WKB Method

The energy eigenfunctions with eigenvalue  are

Suppose that  varies very slowly. We then expect that over a small region  will still behave like a plane wave, with the
local value of the wavelength

then

Validity
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1st order

Without loss of generality we let 

let

if we neglect all  terms we get the previous result. But if we include  we get

Time-Independent Perturbation Theory

Developed by Erwin Schrödinger.

Equating each order we get

Using  for  we get

Validity

A necessary condition for  to be small compared to  is that

Selection rules

Degenerate Perturbation Theory

We need to find the basis that diagonalizes  only within the degenerate space and not the full Hilbert space.
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Time-Dependent Perturbation Theory

Method of variation of constants

Developed by Paul Dirac. Let  and assume that we know the eigenstates  of  which form a
complete basis then

in the above eqn we need to substitute  th order solution to get  th order. Let at  then  to the zeroth
order is 

 is the probability that the state will go from $ to  if we apply  from .  transition amplitude.

Often we define .

Sudden Perturbation

unless  is a multiple of . If the transition probability
 is calculated perturbatively, it must vanish to any given order.

Adiabatic Perturbation

Let  and  (complete basis) then

neglect the right hand side if  is small and there is a finite gap  between the energies.
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with the dynamical phase  and geometric phase 

Periodic Perturbation

Let  be started at  then

For small , the system shows no particular preference for the level with
 . Only when  does it begin to favor . Now we know that 

since  and

Fermi's golden rule

Derived by Dirac.

The transition probability per unit of time from the initial state  to a set of final states  is essentially constant.

Harmonic Perturbation

 (emission+absorption)
 

 
   

 

 
  

Detailed balancing:
emission rate for i -> [n] /density of final states for [n] =
absorption rate for n -> [i]/density of final states for [i]

For constant perturbation, we obtain appreciable transition
 probability for  only if  . In contrast, for harmonic perturbation, we have appreciable transition

probability only if  (stimulated emission) or  (absorption).

Interaction of Atoms with Radiation

Pictures
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Heisenberg Interaction Schrödinger

Ket state constant

Observable constant

Density
matrix constant

Heisenberg Picture

Interaction Picture

If ,

Method of Dyson series

Scattering Theory

Lippmann–Schwinger equation

Let , where the eigenstates of  are known exactly, and the potential V gives corrections that are small in
some sense

If the energies  are continuous, we should be able to find an eigenstate  of the full Hamiltonian with the same
eigenvalue:

we can see that if

also if we define 

we often define the transfer matrix by  then
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https://en.wikipedia.org/wiki/Schr%C3%B6dinger_picture


But  is not defined since  is singular in matrix form. So, we add  for some  and 

 and in the end we can apply 

as expected using . Note that  as they

are not normalizable. By defining  we get 

Green's function

Let  then 

The cross section

The general solution for a scattering is
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here  is the scattering amplitude.
In writing above eqn we have used the elasticity of the scattering, imposing the condition that the outgoing wave has the
same momentum, , as the incoming wave.
Differential cross section is 

Spherically symmetric

Optical theorem

Derived by Werner Heisenberg.

Born approximation

The above semi-blue equation for local (i.e. ) potentials will become:

For large 

In the above blue equation we can substitute  up to the 0th order and we will get
the 1sr order solution. We can go on similarly to get higher order solutions.
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Validity

If the potential is strong enough to develop a bound state, the Born approximation will probably give a misleading result.

Quite generally, the Born approximation tends to get better at higher energies.

Let us assume that a "typical" value for the potential energy  is  and that it acts within some "range" . Writing 

Partial-wave analysis

The Free Particle in Spherical Coordinates

Let  and  then

if  then

Now analogous to harmonic oscillator we define

Note that  is anti-Hermitian since  is Hermitian.

choose  , for it can always be absorbed in the normalization. We can find the following two independent solutions for 

Now  is unacceptable at  since it should go to . If, however, one is considering the equation in a region that
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 and  are the spherical Bessel functions and Neumann functions of order  respectively.

 are regular and  are irregular since

Connection with the Solution in Cartesian Coordinates

Consider now the case of a particle moving along the  axis with momentum . Since 

Partial wave expansion

The incoming wave can be written as

the full wave can be expressed as
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the full wave can also be expressed as

comparing the asymptotic coefficients we get

Formulas used to derive 
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Optical theorem

The Hard Sphere

 and 

The hard sphere has pushed out the wave function, forcing it to start its sinusoidal oscillations at  instead of . In
general, repulsive potentials give negative phase shifts (since they slow down the particle and reduce the phase shift per
unit length) while attractive potentials give positive phase shifts (for the opposite reason).

If 

Resonances

Near resonance  will be of the form

Now neglect  then

 is described by a bell-shaped curve, called the Breit-Wigner form, with a maximum height  (the unitarity bound) and
a half-width . This phenomenon is called a resonance.

Appendix

Dirac Delta
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Cauchy integration formula

To calculate a integral on the real line we can extrapolate it into a closed integral extending to the side of  or 
 depending on whether it goes to zero on  or .
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